Skip to main content

Main menu

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

User menu

  • Sample our Content
  • Request a Demo
  • Log in

Search

  • ADVANCED SEARCH: Discover more content by journal, author or time frame
The Journal of Financial Data Science
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Sample our Content
  • Request a Demo
  • Log in
The Journal of Financial Data Science

The Journal of Financial Data Science

ADVANCED SEARCH: Discover more content by journal, author or time frame

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

Optimal Trading Algorithms under Regime Switching

Moustapha Pemy
The Journal of Financial Data Science Spring 2022, jfds.2022.1.092; DOI: https://doi.org/10.3905/jfds.2022.1.092
Moustapha Pemy
is a professor in the Department of Mathematics at Towson University in Towson, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF (Subscribers Only)
Loading

Click to login and read the full article.

Don’t have access? Click here to request a demo 
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600

Abstract

In this article, the author is concerned with the problem of efficiently trading a large position in the marketplace when the stock price dynamic follows a regime-switching process. If the execution of a large order is not done properly, this will certainly lead to large losses. Given that the execution of a large position may take several trading days, it is therefore reasonable to assume that the market microstructure may change during the execution of the order. To address this possibility, the author assumes that the stock price follows a regime-switching model. This article is particularly interested in trading algorithms that track market benchmarks such as the volume-weighted average price (VWAP) and the minimum execution shortfall. The author proposes trading algorithms that break the execution order into small pieces and execute them over a predetermined period of time so as to minimize the overall execution shortfall or exceed the overall market VWAP. The underlying problem is formulated as a discrete-time stochastic optimal control problem with resource constraints. The value function and optimal trading strategies are derived in closed form. Numerical simulations with market data are reported to illustrate the pertinence of the approach.

  • © 2022 Pageant Media Ltd
View Full Text

Don’t have access? Click here to request a demo

Alternatively, Call a member of the team to discuss membership options

US and Overseas: +1 646-931-9045

UK: 0207 139 1600

Log in using your username and password

Forgot your user name or password?
Next
Back to top

Explore our content to discover more relevant research

  • By topic
  • Across journals
  • From the experts
  • Monthly highlights
  • Special collections

In this issue

The Journal of Financial Data Science: 4 (2)
The Journal of Financial Data Science
Vol. 4, Issue 2
Spring 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on The Journal of Financial Data Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Optimal Trading Algorithms under Regime Switching
(Your Name) has sent you a message from The Journal of Financial Data Science
(Your Name) thought you would like to see the The Journal of Financial Data Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Optimal Trading Algorithms under Regime Switching
Moustapha Pemy
The Journal of Financial Data Science Apr 2022, jfds.2022.1.092; DOI: 10.3905/jfds.2022.1.092

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Save To My Folders
Share
Optimal Trading Algorithms under Regime Switching
Moustapha Pemy
The Journal of Financial Data Science Apr 2022, jfds.2022.1.092; DOI: 10.3905/jfds.2022.1.092
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Tweet Widget Facebook Like LinkedIn logo

Jump to section

  • Article
    • Abstract
    • TRACKING A TRADING BENCHMARK
    • TRACKING A VARIANT OF A TRADING BENCHMARK
    • APPLICATION
    • CONCLUSION
    • APPENDIX
    • REFERENCES
  • Info & Metrics
  • PDF

Similar Articles

Cited By...

  • No citing articles found.
  • Google Scholar
LONDON
One London Wall, London, EC2Y 5EA
0207 139 1600
 
NEW YORK
41 Madison Avenue, 20th Floor, New York, NY 10010
646 931 9045
pm-research@pageantmedia.com

Stay Connected

  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

MORE FROM PMR

  • Home
  • Awards
  • Investment Guides
  • Videos
  • About PMR

INFORMATION FOR

  • Academics
  • Agents
  • Authors
  • Content Usage Terms

GET INVOLVED

  • Advertise
  • Publish
  • Article Licensing
  • Contact Us
  • Subscribe Now
  • Sign In
  • Update your profile
  • Give us your feedback

© 2022 Pageant Media Ltd | All Rights Reserved | ISSN: 2640-3943 | E-ISSN: 2640-3951

  • Site Map
  • Terms & Conditions
  • Privacy Policy
  • Cookies