Skip to main content

Main menu

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

User menu

  • Sample our Content
  • Request a Demo
  • Log in

Search

  • ADVANCED SEARCH: Discover more content by journal, author or time frame
The Journal of Financial Data Science
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Sample our Content
  • Request a Demo
  • Log in
The Journal of Financial Data Science

The Journal of Financial Data Science

ADVANCED SEARCH: Discover more content by journal, author or time frame

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

Online Learning with Radial Basis Function Networks

Gabriel Borrageiro, Nick Firoozye and Paolo Barucca
The Journal of Financial Data Science Winter 2023, 5 (1) 76-95; DOI: https://doi.org/10.3905/jfds.2022.1.112
Gabriel Borrageiro
is a PhD student at University College London in London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nick Firoozye
is an honorary Reader at University College London in London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paolo Barucca
is a lecturer at University College London in London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF (Subscribers Only)
Loading

Click to login and read the full article.

Don’t have access? Click here to request a demo 
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600

Abstract

The authors provide multi-horizon forecasts on the returns of financial time series. Their sequentially optimised radial basis function network (RBFNet) outperforms a random-walk baseline and several powerful supervised learners. Their RBFNets naturally measure the similarity between test samples and prototypes that capture the characteristics of the feature space. The authors show that the training set financial time series returns have low similarity with their test set counterparts, highlighting the challenges faced in particular by kernel-based methods that use the training set returns as test-time prototypes; in contrast, their online learning RBFNets have hidden units that retain greater similarity across time.

  • © 2023 Pageant Media Ltd
View Full Text

Don’t have access? Click here to request a demo

Alternatively, Call a member of the team to discuss membership options

US and Overseas: +1 646-931-9045

UK: 0207 139 1600

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

Explore our content to discover more relevant research

  • By topic
  • Across journals
  • From the experts
  • Monthly highlights
  • Special collections

In this issue

The Journal of Financial Data Science: 5 (1)
The Journal of Financial Data Science
Vol. 5, Issue 1
Winter 2023
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on The Journal of Financial Data Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Online Learning with Radial Basis Function Networks
(Your Name) has sent you a message from The Journal of Financial Data Science
(Your Name) thought you would like to see the The Journal of Financial Data Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Online Learning with Radial Basis Function Networks
Gabriel Borrageiro, Nick Firoozye, Paolo Barucca
The Journal of Financial Data Science Jan 2023, 5 (1) 76-95; DOI: 10.3905/jfds.2022.1.112

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Save To My Folders
Share
Online Learning with Radial Basis Function Networks
Gabriel Borrageiro, Nick Firoozye, Paolo Barucca
The Journal of Financial Data Science Jan 2023, 5 (1) 76-95; DOI: 10.3905/jfds.2022.1.112
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Tweet Widget Facebook Like LinkedIn logo

Jump to section

  • Article
    • Abstract
    • THE RBFNET
    • THE REFINITIV DATASET
    • THE RESEARCH EXPERIMENT
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • REFERENCES
  • Info & Metrics
  • PDF (Subscribers Only)
  • PDF (Subscribers Only)

Similar Articles

Cited By...

  • No citing articles found.
  • Google Scholar
LONDON
One London Wall, London, EC2Y 5EA
0207 139 1600
 
NEW YORK
41 Madison Avenue, 20th Floor, New York, NY 10010
646 931 9045
reply@pm-research.com

Stay Connected

  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

MORE FROM PMR

  • Home
  • Awards
  • Investment Guides
  • Videos
  • About PMR

INFORMATION FOR

  • Academics
  • Agents
  • Authors
  • Content Usage Terms

GET INVOLVED

  • Advertise
  • Publish
  • Article Licensing
  • Contact Us
  • Subscribe Now
  • Sign In
  • Update your profile
  • Give us your feedback

© 2023 With Intelligence Ltd | All Rights Reserved | ISSN: 2640-3943 | E-ISSN: 2640-3951

  • Site Map
  • Terms & Conditions
  • Privacy Policy
  • Cookies