Click to login and read the full article.
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600
Abstract
Over the past decade, there is a surging trend to integrate environmental, social, and governance (ESG) criteria into financial decision making. ESG information extracted manually from text sources, such as company statements, press releases, and regulatory disclosures, can be expensive and inconsistent due to human interpretation. In this article, the authors introduce the application of prompt-based learning, a cutting-edge natural language processing (NLP) technology, to classify textual data into ESG and non-ESG categories. In particular, the authors establish a prompt-based ESG classifier, using data from Refinitiv, and benchmark it against a traditional pre-train and fine-tune classifier through statistical test. The authors fine-tune the classifiers on various sizes of training data. The experiment shows that the prompt-based learning approach outperforms the traditional pre-train and fine-tune classifier and can generate promising results when training data are limited.
- © 2023 Pageant Media Ltd
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600