Skip to main content

Main menu

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

User menu

  • Sample our Content
  • Request a Demo
  • Log in

Search

  • ADVANCED SEARCH: Discover more content by journal, author or time frame
The Journal of Financial Data Science
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Sample our Content
  • Request a Demo
  • Log in
The Journal of Financial Data Science

The Journal of Financial Data Science

ADVANCED SEARCH: Discover more content by journal, author or time frame

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

Ensemble Meta-Labeling

Dennis Thumm, Paolo Barucca and Jacques Francois Joubert
The Journal of Financial Data Science Winter 2023, 5 (1) 10-26; DOI: https://doi.org/10.3905/jfds.2022.1.114
Dennis Thumm
is a quantitative researcher at Hudson and Thames Quantitative Research in London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paolo Barucca
is a lecturer in the Department of Computer Science at University College London in London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jacques Francois Joubert
is the chief executive officer of Hudson and Thames Quantitative Research in London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF (Subscribers Only)
Loading

Click to login and read the full article.

Don’t have access? Click here to request a demo 
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600

Abstract

This study systematically investigates different ensemble methods for meta-labeling in finance and presents a framework to facilitate the selection of ensemble learning models for this purpose. Experiments were conducted on the components of information advantage and modeling for false positives to discover whether ensembles were better at extracting and detecting regimes and whether they increased model efficiency. The authors demonstrate that ensembles are especially beneficial when the underlying data consist of multiple regimes and are nonlinear in nature. The authors’ framework serves as a starting point for further research. They suggest that the use of different fusion strategies may foster model selection. Finally, the authors elaborate on how additional applications, such as position sizing, may benefit from their framework.

  • © 2023 Pageant Media Ltd
View Full Text

Don’t have access? Click here to request a demo

Alternatively, Call a member of the team to discuss membership options

US and Overseas: +1 646-931-9045

UK: 0207 139 1600

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

Explore our content to discover more relevant research

  • By topic
  • Across journals
  • From the experts
  • Monthly highlights
  • Special collections

In this issue

The Journal of Financial Data Science: 5 (1)
The Journal of Financial Data Science
Vol. 5, Issue 1
Winter 2023
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on The Journal of Financial Data Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ensemble Meta-Labeling
(Your Name) has sent you a message from The Journal of Financial Data Science
(Your Name) thought you would like to see the The Journal of Financial Data Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Ensemble Meta-Labeling
Dennis Thumm, Paolo Barucca, Jacques Francois Joubert
The Journal of Financial Data Science Jan 2023, 5 (1) 10-26; DOI: 10.3905/jfds.2022.1.114

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Save To My Folders
Share
Ensemble Meta-Labeling
Dennis Thumm, Paolo Barucca, Jacques Francois Joubert
The Journal of Financial Data Science Jan 2023, 5 (1) 10-26; DOI: 10.3905/jfds.2022.1.114
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Tweet Widget Facebook Like LinkedIn logo

Jump to section

  • Article
    • Abstract
    • THEORETICAL FRAMEWORK
    • METHODOLOGY
    • RESULTS
    • FRAMEWORK
    • DISCUSSION
    • CONCLUSION
    • APPENDIX
    • REFERENCES
  • Info & Metrics
  • PDF (Subscribers Only)
  • PDF (Subscribers Only)

Similar Articles

Cited By...

  • No citing articles found.
  • Google Scholar
LONDON
One London Wall, London, EC2Y 5EA
0207 139 1600
 
NEW YORK
41 Madison Avenue, 20th Floor, New York, NY 10010
646 931 9045
reply@pm-research.com

Stay Connected

  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

MORE FROM PMR

  • Home
  • Awards
  • Investment Guides
  • Videos
  • About PMR

INFORMATION FOR

  • Academics
  • Agents
  • Authors
  • Content Usage Terms

GET INVOLVED

  • Advertise
  • Publish
  • Article Licensing
  • Contact Us
  • Subscribe Now
  • Sign In
  • Update your profile
  • Give us your feedback

© 2023 With Intelligence Ltd | All Rights Reserved | ISSN: 2640-3943 | E-ISSN: 2640-3951

  • Site Map
  • Terms & Conditions
  • Privacy Policy
  • Cookies