Skip to main content

Main menu

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

User menu

  • Sample our Content
  • Request a Demo
  • Log in

Search

  • ADVANCED SEARCH: Discover more content by journal, author or time frame
The Journal of Financial Data Science
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Sample our Content
  • Request a Demo
  • Log in
The Journal of Financial Data Science

The Journal of Financial Data Science

ADVANCED SEARCH: Discover more content by journal, author or time frame

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

Health State Risk Categorization: A Machine Learning Clustering Approach Using Health and Retirement Study Data

Fu Tan and Dhagash Mehta
The Journal of Financial Data Science Spring 2022, 4 (2) 139-167; DOI: https://doi.org/10.3905/jfds.2022.4.2.139
Fu Tan
is an investment research analyst within Vanguard’s Investment Strategy Group at The Vanguard Group, Inc., in Malvern, PA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dhagash Mehta
at the time the research was produced, he was a senior manager and investment strategist within Vanguard’s Investment Strategy Group, in Malvern, PA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF (Subscribers Only)
Loading

Click to login and read the full article.

Don’t have access? Click here to request a demo 
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600

Abstract

For countries such as the United States, which lacks a universal health care system, future health care costs can create significant uncertainty that a retirement investment strategy must be built to manage. One of the most important factors determining health care costs is the individual’s health status. Hence, categorizing individuals into meaningful health risk types is an essential task. The conventional approach is to use individuals’ self-rated health state categorization. In this work, the authors provide an objective and data-driven machine learning (ML)–based approach to categorize heath state risk by using the most widely used US household surveys on older Americans, the Health and Retirement Study (HRS). The authors propose an approach of employing the K-modes clustering method to algorithmically cluster on an exhaustive list of categorical health-related variables in the HRS. The resulting clusters are shown to provide an objective, interpretable, and practical health state risk categorization. The authors then compare and contrast the ML-based and self-rated health state categorizations and discuss the implications of the differences. They also illustrate the difficulty in predicting out-of-pocket costs based on self-rated health status and how ML-based categorizations can generate more-accurate health care cost estimates for personalized retirement planning. The results in this article open different avenues of research, including behavioral science analysis for health and retirement study.

  • © 2022 Pageant Media Ltd
View Full Text

Don’t have access? Click here to request a demo

Alternatively, Call a member of the team to discuss membership options

US and Overseas: +1 646-931-9045

UK: 0207 139 1600

Log in using your username and password

Forgot your user name or password?
Previous
Back to top

Explore our content to discover more relevant research

  • By topic
  • Across journals
  • From the experts
  • Monthly highlights
  • Special collections

In this issue

The Journal of Financial Data Science: 4 (2)
The Journal of Financial Data Science
Vol. 4, Issue 2
Spring 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on The Journal of Financial Data Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Health State Risk Categorization: A Machine Learning Clustering Approach Using Health and Retirement Study Data
(Your Name) has sent you a message from The Journal of Financial Data Science
(Your Name) thought you would like to see the The Journal of Financial Data Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Health State Risk Categorization: A Machine Learning Clustering Approach Using Health and Retirement Study Data
Fu Tan, Dhagash Mehta
The Journal of Financial Data Science Apr 2022, 4 (2) 139-167; DOI: 10.3905/jfds.2022.4.2.139

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Save To My Folders
Share
Health State Risk Categorization: A Machine Learning Clustering Approach Using Health and Retirement Study Data
Fu Tan, Dhagash Mehta
The Journal of Financial Data Science Apr 2022, 4 (2) 139-167; DOI: 10.3905/jfds.2022.4.2.139
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Tweet Widget Facebook Like LinkedIn logo

Jump to section

  • Article
    • Abstract
    • DATA DESCRIPTION
    • COMPARING AND CONTRASTING ML-BASED AND SELF-RATED HEALTH STATES
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • APPENDIX
    • ENDNOTES
    • REFERENCES
  • Info & Metrics
  • PDF (Subscribers Only)
  • PDF (Subscribers Only)

Similar Articles

Cited By...

  • No citing articles found.
  • Google Scholar
LONDON
One London Wall, London, EC2Y 5EA
0207 139 1600
 
NEW YORK
41 Madison Avenue, 20th Floor, New York, NY 10010
646 931 9045
pm-research@pageantmedia.com

Stay Connected

  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

MORE FROM PMR

  • Home
  • Awards
  • Investment Guides
  • Videos
  • About PMR

INFORMATION FOR

  • Academics
  • Agents
  • Authors
  • Content Usage Terms

GET INVOLVED

  • Advertise
  • Publish
  • Article Licensing
  • Contact Us
  • Subscribe Now
  • Sign In
  • Update your profile
  • Give us your feedback

© 2022 Pageant Media Ltd | All Rights Reserved | ISSN: 2640-3943 | E-ISSN: 2640-3951

  • Site Map
  • Terms & Conditions
  • Privacy Policy
  • Cookies