Skip to main content

Main menu

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

User menu

  • Sample our Content
  • Request a Demo
  • Log in

Search

  • ADVANCED SEARCH: Discover more content by journal, author or time frame
The Journal of Financial Data Science
  • IPR logos x
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Sample our Content
  • Request a Demo
  • Log in
The Journal of Financial Data Science

The Journal of Financial Data Science

ADVANCED SEARCH: Discover more content by journal, author or time frame

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JFDS
    • Editorial Board
    • Published Ahead of Print (PAP)
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

Deep Hedging of Derivatives Using Reinforcement Learning

Jay Cao, Jacky Chen, John Hull and Zissis Poulos
The Journal of Financial Data Science Winter 2021, 3 (1) 10-27; DOI: https://doi.org/10.3905/jfds.2020.1.052
Jay Cao
is a senior research associate at the Joseph L. Rotman School of Management in Toronto, ON, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jacky Chen
is a research associate at the Joseph L. Rotman School of Management and an associate portfolio manager at OPTrust in Toronto, ON, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Hull
is a professor at the Joseph L. Rotman School of Management in Toronto, ON, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zissis Poulos
is a postdoctoral fellow at the Joseph L. Rotman School of Management in Toronto, ON, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF (Subscribers Only)
Loading

Click to login and read the full article.

Don’t have access? Click here to request a demo 
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600

Abstract

This article shows how reinforcement learning can be used to derive optimal hedging strategies for derivatives when there are transaction costs. The article illustrates the approach by showing the difference between using delta hedging and optimal hedging for a short position in a call option when the objective is to minimize a function equal to the mean hedging cost plus a constant times the standard deviation of the hedging cost. Two situations are considered. In the first, the asset price follows a geometric Brownian motion. In the second, the asset price follows a stochastic volatility process. The article extends the basic reinforcement learning approach in several ways. First, it uses two different Q-functions to track both the expected value of the cost and the expected value of the square of the cost. This approach increases the range of objective functions that can be used. Second, it uses a learning algorithm that allows for continuous state and action space. Third, it compares the accounting profit and loss (P&L) approach and the cash flow approach. The authors find that a hybrid approach involving the use of an accounting P&L approach that incorporates a relatively simple valuation model works well.

TOPICS: Big data/machine learning, derivatives, simulations

Key Findings

  • ▪ The authors show how reinforcement learning can be used to derive optimal hedging strategies for derivatives in the presence of transaction costs.

  • ▪ They extend the standard reinforcement learning approach by using multiple Q-functions to increase the range of objective functions that can be used and by using algorithms that allow the state space and action space to be continuous.

  • ▪ For valuing the hedging position at each step, the authors compare three approaches: the accounting P&L, cash flow, and a hybrid involving the use of an accounting P&L approach that incorporates a relatively simple valuation model.

  • © 2021 Pageant Media Ltd
View Full Text

Don’t have access? Click here to request a demo

Alternatively, Call a member of the team to discuss membership options

US and Overseas: +1 646-931-9045

UK: 0207 139 1600

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

Explore our content to discover more relevant research

  • By topic
  • Across journals
  • From the experts
  • Monthly highlights
  • Special collections

In this issue

The Journal of Financial Data Science: 3 (1)
The Journal of Financial Data Science
Vol. 3, Issue 1
Winter 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on The Journal of Financial Data Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Hedging of Derivatives Using Reinforcement Learning
(Your Name) has sent you a message from The Journal of Financial Data Science
(Your Name) thought you would like to see the The Journal of Financial Data Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Deep Hedging of Derivatives Using Reinforcement Learning
Jay Cao, Jacky Chen, John Hull, Zissis Poulos
The Journal of Financial Data Science Jan 2021, 3 (1) 10-27; DOI: 10.3905/jfds.2020.1.052

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Save To My Folders
Share
Deep Hedging of Derivatives Using Reinforcement Learning
Jay Cao, Jacky Chen, John Hull, Zissis Poulos
The Journal of Financial Data Science Jan 2021, 3 (1) 10-27; DOI: 10.3905/jfds.2020.1.052
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Tweet Widget Facebook Like LinkedIn logo

Jump to section

  • Article
    • Abstract
    • REINFORCEMENT LEARNING
    • APPLICATION TO HEDGING
    • GEOMETRIC BROWNIAN MOTION TEST
    • STOCHASTIC VOLATILITY TEST
    • CONCLUSIONS
    • ENDNOTES
    • REFERENCES
  • Info & Metrics
  • PDF (Subscribers Only)
  • PDF (Subscribers Only)

Similar Articles

Cited By...

  • No citing articles found.
  • Google Scholar
LONDON
One London Wall, London, EC2Y 5EA
0207 139 1600
 
NEW YORK
41 Madison Avenue, 20th Floor, New York, NY 10010
646 931 9045
pm-research@pageantmedia.com

Stay Connected

  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

MORE FROM PMR

  • Home
  • Awards
  • Investment Guides
  • Videos
  • About PMR

INFORMATION FOR

  • Academics
  • Agents
  • Authors
  • Content Usage Terms

GET INVOLVED

  • Advertise
  • Publish
  • Article Licensing
  • Contact Us
  • Subscribe Now
  • Sign In
  • Update your profile
  • Give us your feedback

© 2022 Pageant Media Ltd | All Rights Reserved | ISSN: 2640-3943 | E-ISSN: 2640-3951

  • Site Map
  • Terms & Conditions
  • Privacy Policy
  • Cookies