Click to login and read the full article.
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600
Abstract
In this article, the authors use machine learning tools to analyze industry return predictability based on the information in lagged industry returns. Controlling for post-selection inference and multiple testing, they find significant in-sample evidence of industry return predictability. Lagged returns for the financial sector and commodity- and material-producing industries exhibit widespread predictive ability, consistent with the gradual diffusion of information across economically linked industries. Out-of-sample industry return forecasts that incorporate the information in lagged industry returns are economically valuable: Controlling for systematic risk using leading multifactor models from the literature, an industry-rotation portfolio that goes long (short) industries with the highest (lowest) forecasted returns delivers an annualized alpha of over 8%. The industry-rotation portfolio also generates substantial gains during economic downturns, including the Great Recession.
TOPICS: Big data/machine learning, analysis of individual factors/risk premia, portfolio construction, performance measurement
- © 2019 Pageant Media Ltd
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600